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Abstract. Recently, sparse based learning methods have attracted much
attention in robust visual tracking due to their effectiveness and promis-
ing tracking results. By representing the target object sparsely, utilising
only a few adaptive dictionary templates, in this paper, we introduce a
new particle filter based tracking method, in which we aim to capture
the underlying structure among the particle samples using the proposed
similarity graph in a Laplacian group sparse framework, such that the
tracking results can be improved. Furthermore, in our tracker, particles
contribute with different probabilities in the tracking result with respect
to their relative positions in a given frame in regard to the current tar-
get object location. In addition, since the new target object can be well
modelled by the most recent tracking results, we prefer to utilise the
particle samples that are highly associated to the preceding tracking re-
sults. We demonstrate that the proposed formulation can be efficiently
solved using the Accelerated Proximal method with just a small num-
ber of iterations. The proposed approach has been extensively evaluated
on 12 challenging video sequences. Experimental results compared to the
state-of-the-art methods demonstrate the merits of the proposed tracker.

1 Introduction

Object tracking is a well-studied problem in computer vision and has many
practical applications. The problem and its difficulty depend on several fac-
tors, such as the amount of prior knowledge about the target object. Tracking
of generic objects has remained challenging because an object can drastically
change appearance when deforming (e.g. a pedestrian), rotating out of plane,
being occluded, or when the illumination of the scene changes.

Recently, sparse representation has been strongly applied to visual tracking
[1, 2]. In this case, the tracker represents each target candidate as a sparse lin-
ear combination of dictionary templates that can be dynamically updated to
preserve an up-to-date target appearance model. However, sparse coding based
trackers perform a computationally expensive l1 minimisation at each frame.
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The drawback of these methods is that they ignore the underlying structure
between particles and learn sparse representations of particles separately. Ignor-
ing the relationships among particle representations tend to make the tracker
more prone to drifting away from the target, especially in cases of significant
appearance changes of the tracking target.

In this paper, we propose a computationally efficient Laplacian group sparse
learning approach for visual tracking in a particle filter framework. Here, we
consider each particle sample as a task and explore task correlation between
particles. Besides, we further extend our designed objective function with the
Laplacian norm to recognise the overall structure among particles with a defined
similarity graph. Unlike previous methods, we also consider the consistency be-
tween tracking results in a short period of time and since the new tracking result
is more likely to be similar with the most recent ones, we construct another set
of dictionary items, but this time for the current candidate samples, select the
most correlated ones and ignore the rest.

Finally, a new likelihood model is proposed based on two factors: (1) the
relative location of the particles w.r.t. the current target object and (2) the
similarity between target candidates and the dictionary templates. Consequently,
once the current tracking result causes a large variance and is not occluded, we
replace it with the dictionary template has less similarity with the tracking
result.

2 Related Work

In general, object tracking methods can be categorised as either generative or
discriminative.

2.1 Generative Trackers

Generative methods represent the target object with models that have mini-
mum reconstruction errors, and track targets by searching for the region most
similar to the models in an image frame. Examples of generative methods are
eigentracker [3], mean shift tracker [4], context-aware tracker [5], fragment-based
tracker (Frag) [6], incremental tracker (IVT) [7], and VTD tracker [8]. Most re-
cent generative methods learn and maintain static or online appearance models.
Black et al. [3] learn a subspace model offline to represent target objects at
predefined views and build on the optical flow framework for tracking.

2.2 Discriminative Trackers

Discriminative models, which are also called tracking-by-detection methods, con-
sider tracking as a binary classification task to separate the object from its sur-
rounding background. The adaptive tracking-by-detection methods first train a
classifier in an online manner using samples extracted from the current frame. In



Title Suppressed Due to Excessive Length 3

the next frame, a sliding window is then used to extract samples around the pre-
vious object location, before the previously trained classifier is applied to these
samples. The location of the sample with the maximum classifier score is the
new object location at the current frame. Examples of discriminative methods
are on-line boosting (OAB) [9], ensemble tracking [10], co-training tracking [11],
adaptive metric differential tracking [12] and online multiple instance learning
tracking [13].

2.3 Sparse Representation for Object Tracking

The recent development of sparse representations [1, 2] has attracted consider-
able interest in object tracking due to its robustness to occlusion and image noise.
In [1], a target candidate is represented as a sparse linear combination of ob-
ject templates and trivial templates. For each particle, a sparse representation is
computed by solving a constrained l1 minimisation problem with non-negativity
constraints, thus, solving the inverse intensity pattern problem during tracking.
Although this method yields good tracking performance, it comes at the com-
putational expense of multiple l1 minimisation problems that are independently
solved. In Mei et al. [2], an efficient l1 tracker with minimum error bound and
occlusion detection is proposed. Zhang et al. [14] investigate convex mixed norm
lp,q (i.e. p ≥ 1, q ≥ 1) to enforce joint sparsity for the particles. In [15], a particle
filter based tracking formulated as a structured multi-task sparse learning prob-
lem, where particle representations, regularised by a sparsity-inducing mixed
norm and a local graph term.

3 System Overview

3.1 Bayesian Inference Framework

In this paper, visual tracking is formulated within the Bayesian inference frame-
work, in which the goal is to determine the a posteriori probability of the target
state. In this paper, we utilise the particle filter as an effective realisation of
Bayesian filtering, whereas the idea is to approximate the posterior distribution

p (st |z1:t ) by a set of weighted particles
{
s
(i)
t , π

(i)
t

}N
i=1

where z1:t denotes the

set of observations up to and including the time step t and each particle repre-
sents a possible state st and a weight πt associated with it, which specifies its
corresponding state’s confidence. Considering Bayesian estimation scheme, the
filtering distribution can be recursively updated as:

p (st |z1:t−1 ) =

∫
p (st |st−1 ) p (st−1 |z1:t−1 ) dst−1 (1)

p (st |z1:t ) ∝ p (zt |st ) p (st |z1:t−1 ) (2)

First, new particles are generated by sampling from a known proposal func-

tion q
(
st

∣∣∣s(i)0:t−1 , z1:t

)
where the simplest choice for the proposal function is the
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state evolution model p (st |st−1 ) itself for sampling. Further, the optimal state
is obtained by the maximum a posteriori (MAP) estimation over a set of N
samples. In our algorithm, we model the motion of a target object between two
consecutive frames with an affine transformation. Let st be the six-dimensional
parameter vector of an affine transformation. The transformation of each pa-
rameter is modelled independently by a scalar Gaussian distribution. Then, the
dynamic model p (st |st−1 ) can be represented by a Gaussian distribution. The
likelihood (observation) model p (zt |st ) reflects the similarity measure for the
tracking target. In this paper, the weights of the particles are specified by the
proposed spatial score weighted by the difference in contribution of object tem-
plates and the background templates, in which a sample with a larger difference
score indicates that it is more likely to be correlated with target object rather
than background. The most likely sample is considered as the tracking result for
that video frame.

3.2 Contribution

Inspired by the mentioned related works, we seek a particle filter based tracker
using sparse representation scheme, which not only reduces the computational
expense caused by regressing individual particles with respect to the defined dic-
tionary, but also models the common structure among particle samples. Zhang
et al. [15] extend the MTT framework to take into account pairwise structural
correlations between particles. However, our tracker is superior and more stable.
The key idea is constructing a similarity graph to better model structural infor-
mation of the sampled particles. To represent the graph reqularizer, the tracker
in [15] only uses pairwise distance between each pair of particles by considering
their spatial locations, which ignores the global structure of the whole particles
and is prone to the outliers. In [16], it is extensively shown that each data point
in a union of subspaces can be efficiently reconstructed by a combination of other
points in the dataset. However, the spanned subspaces are usually dependent,
which causes the wrong choice of inter subspaces. Based on this assumption, we
consider both the mutual local and global structure of the particles. Here, we
summarised our main contributions:

1. In this paper, inspired by the similar successful works in image classification
e.g [17], we formulate object tracking by proposing an enhanced Laplacian
group sparse coding based scheme where the similarity among the particles
specified by a graph structure, which makes the sparse codes of those parti-
cles placed close together be similar to each other (e.g. spatial smoothness).
Furthermore, we investigate an enhanced similarity graph which not only
considers pairwise similarity between particles, but also encode linearly rep-
resentation of each particle with respect to others in a topological space.
The proposed objective function for learning the sparse representation of
candidate samples is rendered as a non-smooth convex (unconstrained) op-
timisation problem in which we implement the accelerated proximal method
(APM) for solving this optimisation problem and develop efficient algorithms
for computing the related proximal mapping.
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2. The target object position ambiguity problem often occurs in visual tracking,
which adversely influences tracking performance. The proposed tracker in-
corporates the particle sample importance into the observation model, which
makes it able to select the most effective particles, resulting in a more stable
tracker.

3. Finally, for the sake of efficient computational complexity and having a faster
tracker, we introduce outlier rejection for the particle samples in the current
frame where we take the advantage of this fact that the current tracking
result can be well represented by the latest tracking results and pick those,
which are more similar to the previous ones and more likely to be the new
tracking result.

In our particle filter based tracking method, particles are randomly sampled
around the current state of the tracked object according to a zero mean Gaussian
distribution. In the tth frame, we considerN particle samples, whose observations
(Gray scale values) are denoted in matrix form as: Y = [y1, . . . , yN ] ∈ Rm×N 1.
We construct our dictionary Dt = [d1, . . . , dK ] ∈ Rm×K , in which the tracked
object can be represented under a variety of appearance changes by its templates
{di}Ki=1 (di is the ith dictionary item).

3.3 Joint Sparse Model

Since in particle filter based visual tracking, particle are densely sampled around
the current target state, there are often underlying correlation structure between
the particles. To explore these hidden structures, [14] employed multi task sparse
learning to impose joint sparsity between the particles (tasks) yields a more accu-
rate representation for the ensemble of particles where the sparse representation
matrix X = [x1, . . . , xN ] ∈ RK×N can be obtained by as follows:

min
X
‖Y −DtX‖2F + λ ‖X‖p,q (3)

Where ‖X‖p,q =
(∑K

i=1 ‖Xi‖qp
) 1

q

, ‖Xi‖p is the lp norm of Xi, (ith row of matrix

X).

3.4 Laplacian Group Sparse Model

As has been discusse discussed, in order to alleviate computationally expense
caused by l1 minimisation of each particle separately in particle filter based
tracking, we seek the common structure among tasks (particle samples) in any
given frame. However, considering a global structure for particles is not strong
assumption. In fact, in practical application, the particles may exhibit a more
sophisticated structure where the sparse representation of closely particles is
more likely to be similar rather than those from different spatial locations. In

1 m = 1024− dim Gray scale based features.
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this paper, we augment multi task learning framework with a graph structure
to consider mutual relation between particles. In this way, is each frame we
construct the similarity graph where the particles are represented by the nodes
and the edges between particles specify their correlation (feature similarity).
Motivated by the success of recent work in image classification[17], we have the
following representation:

‖Y −DtX‖22 +
λ1
2
Tr
(
XL̂XT

)
+ λ2 ‖X‖p,1 (4)

where ‖X‖p,1 =
∑K
i=1 ‖X‖p, λ1 and λ2 are the regularisation parameters. L̂

known as the Laplacian matrix, is symmetric and positive definiteness and acts
as a key factor in our proposed tracker that models the similarity graph for the
particles.

3.5 Solving the Optimisation Problem

The formulated problem in Eq. 4 is a convex optimisation problem with a non-
smooth objective function due to the non-negativity constraint assumption for
the particles representation matrix X. In this paper, we seek to solve this opti-
misation problem using the accelerated proximal method (APM) [18] due to its
ability of optimal convergence compared to other first-order techniques. APM
iterates between two sequences of variables: (1) an attainable solution (updat-

ing the current representation matrix)
{
X̂k

}
and (2) an aggregation matrix

sequence
{
∇k
}

.

Proximal mapping: At each iteration, the representation matrix Xk can be up-
dated by the generaliSed proximal mapping as the following problem:

min
X

1

2
‖X −H‖22 + λ̃ ‖X‖p,1 (5)

where λ̃ = λ2

γk
, H = X̂k − 1

γk
∇k and γk denotes the step size.

∇k = X̂k −
1

γk

(
DT
t

(
Y −DtX̂k

)
+ λ1X̂kL̂

)
(6)

Aggregation sequence: At the kth iteration of APM, the aggregation matrix is
updated by linear combination of Xk and Xk−1 from previous iterations: 2

X̂k+1 = Xk+1 +
µk+1 (1− µk)

µk
(Xk+1 −Xk) (7)

2 µk is conventionally set to 2
k+1

.
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3.6 Enhanced Similarity Graph for the Particles

Regarding the graph structure for the particle samples in the current frame,
the most existing similarity methods only consider pairwise distances of the
data points. Since the pairwise distance only rely on the two connected samples
(nodes) and ignores the global structure of the whole sample points, it is fragile
to outliers. To address this problem, we propose a similarity graph, which takes
advantage of a linear representation of each particle over a set of other particle
samples. The proposed similarity graph not only could encode each particle
feature over the other particles with less residual error, but also enforces the local
representation of each particle sample using the following objective function:

min
ci

N∑
i=1

ρ ‖Sici‖+ (1− ρ) ‖yi −Aici‖ s.t.1T ci = 1 (8)

where we encode each particle sample by building the dictionary Ai
composed of the set of remaining particles at the given frame, Ai =
[y1, y2, · · · , yi−1, 0, yi+1, · · · , yN ], Si is a diagonal matrix whose jth diagonal ele-
ment is the pairwise distance from yi to the jth particle in Ai,(j = 1, 2, · · · , N),
ci is a similarity over the corresponding dictionary, 1 ∈ <N (N is the number
of candidates) denotes the column vector whose entries are all ones and and
ρ is the factor controls the balance between linear representation measure and
pairwise distance scheme. The similarity representation of the proposed graph
can be solved as:

ci =
R−1i 1

1TR−1i 1
(9)

where Ri = (1− ρ)
(
yi1

T −Ai
)T (

yi1
T −Ai

)
+ ρSTi Si. Furthermore, in order

to obtain a more discriminative correlation matrix, we keep the k strongest
connections for each particle using k-nearest neighbour searching on ci and set
all other elements to zero. At the end, we use the obtained similarity matrix as
our Laplacian matrix L̂ in Eq. 4.3

4 Lifespan Outlier Rejection

Since the appearance of a target object is expected to be temporally correlated
and does not change dramatically over a short period of time, the target object
can be represented well by the more recent tracking results w.r.t. the current
frame. Therefore, in each frame, we aim to select the particle samples that are
highly correlated to the previous tracking results and remove the unrelated ones.
In order to achieve this goal, we construct another set of dictionary templates

3 We denote c̃i as a discriminative feature, then we build a similarity graph by consid-
ering each point as a vertex and assigning the connection weight between the node
i and j as |c̃ij |.
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T = {ti}ni=1, in which each column represents the tracking result of the latest
n − 1 frames4 plus the template in the first frame, which is considered as our
proposal. Given the new template set, the sparse coefficient wi for each template
ti can be computed by:

min
wi

∥∥ti − Y wi∥∥22 + λw ‖wi‖1 s.t.∀i, wi ≥ 0, i = 1, · · · , n (10)

where λw is the regularisation factor. Using l1 minimisation of the LARS algo-
rithm [19], we are capable of choosing the highly associated particle samples for
the current frame with reduced computational complexity. The implementation
also has an option to add positivity constraints on the solutions wi, which give
us a precise sparse representation. This representation reveals a small or even
zero value for the jth candidate if it holds little similarity with the ith template.
Therefore, we build a mask for each particle sample, in which if the sum of its
sparse coefficients is zero, we set its weight ωj to zero and ignore this particle as
follows:

ωj =

{
0 if

∑n
i wij = 0

1 Otherwise
(11)

In this way, we build a faster tracker with the least number of particles as possible
(see Fig. 1). Consequently, the selected particle samples will adaptively change
according to different scenes.

5 Likelihood Model Using the Spatial Weight

We present a spatial confidence score for the particles, which can naturally inte-
grate the particle sample importance into the tracking result. Here, we assume
the tracking location at the current frame is the location of the most correct
particle sample to make each particle contribute differently to the target pres-
ence probability: The closer the location is to the current tracked position, the
larger probability it has and the farther it is from the tracking location, the less
it contributes to the object presence probability (see Fig.2).

Up to now, the proposed tracker is entirely generative. However, in order to
handle the drifting problem caused by rapid changes in appearance of the track-
ing object, we build up target templates with background templates randomly
sampled in the first frame, which consequently should be updated in successive
frames. The spatial score for the ith particle can be modelled as:

ψi =
1

C
e−|li−l

∗| (12)

where C is the normalisation constant and l (·) ∈ <2 is the location function. This
spatial weight is a monotone decreasing function w.r.t. the Euclidean distance
between the locations of the ith particle sample and the target location l∗.

4 We consider every n = 5 frames.
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Fig. 1. Illustrating the effect of outlier rejection for the singer 1 sequence. At the
top right, the sparse representation of particles with respect to the target templates
is shown, while brighter columns indicate the presence of outliers. At the bottom,
sparse representations of the most recent tracking results w.r.t. the current particles
are shown. As highlighted, those particles whose sum of their sparse representations is
zero are removed from sampling.

Finally, in order to obtain the overall score for the tracking result, we first
divide the sparse representation matrix X into two subsets, Xpos and Xneg, each

representing the candidate’s similarity to the object (positive) templates D
(O)
t

and background (negative) templates D
(B)
t ,respectively. Further, the weights of

the particles are specified by the difference in contribution of these two parts
and the tracking result zt at time instance t is the particle yi such that:

i = arg max yi=1,...,N ψi �
(
‖Xpos‖1 − ‖Xneg‖1

)
(13)

where � is an element-wise product5. This likelihood function not only encour-
ages the tracking result to be represented well by the object and not the back-

5 This is the element-wise product of two (1×N) matrices. N is the number of sampled
particles.
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Fig. 2. This figure illustrates the principle of the proposed likelihood model. On the left
side, the discriminative scores of candidates are shown. On the right side, the relative
distance between particles and target object is illustrated. The yellow rectangle is the
tracking result. The solid circles are the central locations of each particle and red
rectangles are the particle samples. The corresponding spatial weight of the sample
particle is highlighted.

ground templates, it also gives more weight to the particle samples near the
current tracking location (Fig. 2).

6 Dictionary Update

Updating target object templates for handling appearance change during track-
ing is a vital part of any visual tracking method. Neither fixed object templates
nor frequently updated target templates could help the accurate representation
of target appearance during tracking. Since target appearance only remains un-
changed in just a short period of time, a stable appearance model is not reliable
for long period tracking. On the other hand, if samples are updated frequently,
the model will degrade. The initial dictionary comprising positive templates np
is obtained by drawing sample images around the target location (e.g. within a
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radius of a few pixels) and downsampling the selected images to a normalised
size (32 × 32 pixels in our experiments). Each downsampled image is stacked
together to form the set of positive templates. Similarly, the set of nn negative
templates is composed of images further away from the labelled location (e.g.
within an annular region some pixels away from the target object).

First, for the background templates D
(B)
t , since the surrounding image region

of two consecutive frames are similar, we sample the negative templates from
image regions away (e.g. more than 7 pixels) only from the current tracking
result. Moreover, we take advantage of using our proposed target transition
model to ignore those candidates as tracking result since they are involved in
representing negative templates.

On the other hand, for the object template set D
(O)
t , we allocate a similarity

measure µi that demonstrates how representative the template in tracking result
is. The more a template is used to represent tracking results, the higher its weight
is. Similar to [20], in each frame, we measure the similarity between the current
tracking result and the object templates and if the particles are not sufficiently
represented (up to a predefined threshold Ω = 0.4) by the dictionary, we use
the tracking result to replace the corresponding template with the new tracking
result. In other words, the tracking result is added to the template set if none
of the template is comparable to the tracking result. The weight of this new
template is set to the median of the current normalised weight vector.

7 Experiments and Results

In this paper, we compare the performance of the proposed tracker with several
state-of-the-art trackers. We use the default parameters for these trackers as
they reported. These trackers can be categorized to different groups. Discrim-
inative heuristic trackers include the STRUCK [21], the compressive tracking
based CT [22] and the multiple instance learning-based tracker MIL [23]. On
the opposite side, generative trackers such as the incremental subspace based
IVT [7] and two channels blurring approaches DFT [24] are considered. We also
utilise part-based trackers akin to the TLD [25], which estimate the new target
object by combining the local motion estimates with discriminative learning of
patches and Frag-Track [6], in which the target object is represented by multiple
image fragments or patches. In addition, sparse representations based trackers
like ASLA [26], SCM [27], MTT [14] and L1APG [28] are used. Theses trackers
range from local sparse representations (ASLA tracker) to holistic sparse tem-
plates (MTT and L1APG) and both local-holistic representation method (SCM).
Finally, we implement the VTD method as our last benchmark, which adapts
mixture models based on sparse principal component analysis.

7.1 Parameters Setting

The parameters of the proposed tracking algorithm are fixed in all experiments.
The numbers of positive templates np and negative templates nn are 50 and 200,
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respectively. All weight parameters of Eq. 4 are set to 0.5 and the regularisation
parameter λw in Eq. 10 is fixed to be 0.01. In Eq. (6), we set λ̃ (by cross-
validation) to 0.005 and γk to 1/0.01, respectively. ρ in Eq. (8) is set to 0.5.
The maximum iteration of the objective function in Eq. 4 is set to 10, and 100
particles are chosen as candidate samples in each frame. An observed target
image patch is partitioned into non-overlapping local fragments (image patches)
of size 8 × 8 pixels, each of which is independently represented in gray scale
values, vectorised and normalised to be a vector with unit l2 norm. Then, we
concatenate these local feature vectors so that the global structural information
is maintained. The candidates and templates in this work are all represented
with this locally normalized features to handle partial occlusion and to moderate
appearance variation.

7.2 The Test Sequences

We use 12 challenging video sequences widely used in the literatyre and publicly
available from the online object tracking benchmark6. Each video sequence was
labelled with different attributes including five visual attributes that reflect a
specific challenge in appearance humiliation: (i) abrupt motion, (ii) illumination
change, (iii) occlusion, (iv) scale change and (v) camera motion. Their ground
truths are provided. Figure 3 shows some tracking results for different video
sequences.

7.3 Performance Measure

Numerous performance metrics have been proposed for visual tracking evalua-
tion during recent years. For the purpose of measuring the performance of the
proposed tracker, two criteria, the centre location error as well as the overlap
ratio, are implemented here. It should be noted that a smaller average error or
a bigger overlap rate means a more accurate result. The tracker’s overlap rate

in each frame defined as the area area(BBT∩BBG)
area(BBT∪BBG) , where BBG and BBT denote

the bounding box obtained by the ground truth and a tracker, respectively. An
important advantage of the overlap measure is that it accounts for both position
and size of the predicted and proposal bounding boxes simultaneously and does
not lead to arbitrary large errors at tracking failures. As is shown in Tables 1
and 2, except for two sequences, the results of our tracker outperform the other
trackers. Due to space limitations, we do not mention the detailed results in-
cluding the average error plots and average overlap ratio plots here but do so in
the supplementary material.

8 Conclusion

In this paper, we have presented an enhanced Laplacian group sparse learning
method for particle filter based visual tracking. By imposing the Laplacian group

6 https://sites.google.com/site/trackerbenchmark/benchmarks/v10
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Table 1. Average centre location errors (in pixels). The best three results are shown
in Red, Blue, and Green fonts.

Video
Clip

Frag IVT MIL APG VTD MTT SCM CT TLD ASLAStruck DFT Our

Singer1 22.0 8.5 15.2 3.2 4.1 41.2 3.8 25.1 11.6 5.3 12.6 10.4 2.8

Girl 18.0 48.6 32.2 62.4 21.4 23.9 9.7 21.0 20.3 12.5 10.0 21.5 9.3

Car11 63.8 2.1 43.5 1.7 27.1 1.8 4.1 6.0 25.1 2.0 1.9 2.2 1.5

Face 48.8 69.7 134.6 57.7 140.9 127.2 125.1 144.2 67.5 95.1 25.0 26.8 15.3

David 76.7 3.6 16.1 14.3 13.6 124.2 5.1 15.3 16.3 6.0 3.1 10.2 3.4

Dudek 61.5 8.8 20.3 70.6 66.0 53.8 9.2 23.1 10.5 10.6 11.5 9.5 8.6

Woman 113.6 167.4 122.3 118.5 136.6 127.2 4.3 109.6 110.4 3.2 10.1 15.3 3.1

Bolt 240.1 170.6 163.9 225.5 22.3 106.0 73.2 115.5 34.5 56.4 98.5 102.3 16.5

Jumping 58.6 36.7 10.2 9.1 63.2 19.3 3.9 9.0 8.0 39.2 42.0 39.5 4.6

Mountain141.6 33.2 128.3 130.2 7.5 11.3 5.9 86.7 96.5 5.1 10.5 122.4 3.3

Sylvester 98.9 70.8 31.1 112.5 49.4 14.6 9.0 21.3 17.5 9.1 20.4 34.5 8.5

Tiger1 39.5 158.7 14.2 21.5 28.9 30.9 10.5 20.0 13.9 11.4 12.2 10.0 8.9

Table 2. Average overlap rate (in pixels). The best three results are shown in Red,
Blue, and Green fonts.

Video
Clip

Frag IVT MIL APG VTD MTT SCM CT TLD ASLAStruck DFT Our

Singer1 0.34 0.66 0.33 0.83 0.79 0.32 0.85 0.29 0.65 0.78 0.59 0.72 0.87

Girl 0.69 0.43 0.51 0.33 0.52 0.63 0.69 0.78 0.57 0.72 0.94 0.56 0.96

Car11 0.09 0.81 0.17 0.83 0.43 0.58 0.79 0.71 0.38 0.82 0.86 0.63 0.91

Face 0.39 0.44 0.15 0.35 0.24 0.26 0.36 0.13 0.46 0.21 0.78 0.75 0.86

David 0.19 0.71 0.45 0.57 0.53 0.28 0.69 0.25 0.44 0.63 0.79 0.61 0.81

Dudek 0.46 0.81 0.64 0.61 0.46 0.36 0.76 0.51 0.71 0.73 0.75 0.68 0.83

Woman 0.20 0.18 0.16 0.06 0.15 0.17 0.77 0.16 0.07 0.81 0.86 0.74 0.85

Bolt 0.07 0.13 0.16 0.10 0.82 0.19 0.29 0.12 0.77 0.31 0.15 0.11 0.92

Jumping 0.13 0.29 0.54 0.57 0.09 0.31 0.72 0.96 0.98 0.25 0.18 0.20 0.98

Mountain0.06 0.66 0.14 0.11 0.89 0.81 0.91 0.11 0.25 0.92 0.87 0.10 0.96

Sylvester 0.06 0.51 0.54 0.28 0.44 0.52 0.89 0.65 0.68 0.88 0.70 0.62 0.91

Tiger1 0.19 0.71 0.39 0.15 0.73 0.75 0.82 0.53 0.65 0.80 0.73 0.89 0.95
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Fig. 3. Sample tracking results by our tracker (Enhanced Laplacian Group Sparse
(ELGS)) compared with benchmark results in challenging sequences with rotation and
non-rigid deformation (Bolt sequence), background clutter (MountainBike sequence)
and heavy occlusion (Woman sequence).

sparse penalty term in our objective function, we are able to not only exploit the
underlying relationship shared by different particles, but also to capture their
structure ignored by previous works. Furthermore, we propose an enhanced sim-
ilarity graph for the particle samples robust to outliers. In addition, since the
target object can be modelled well by the more recent tracking results, in each
frame, we remove the particle samples that are not correlated to the previ-
ous tracking results. Finally, a new likelihood function using the discriminative
weighted particles is proposed where the particle importance is considered. In
comparison with 12 state-of-the-art trackers, our tracker shows superior perfor-
mance in both accuracy measures used.
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